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ABSTRACT
In this paper, we investigate Dynamic Thermal Manage-
ment (DTM) policies under soft thermal constraint that
allows the thermal constraint to be violated for a user spec-
ified period. For single core processor, we develop analyt-
ical expression for the optimal frequency policy under the
soft constraint such that maximal performance can be ex-
tracted. We extend this problem to multi-core processor
and provide optimal frequency policy when all cores run at
same frequency. We also present LP based approximated
formulation that generates frequency policies where each
core has separate frequency control and considers leakage
power. We use frequency legalization to approximate the
frequency into discrete values. Experimental results in-
dicate that 10℃ increase in core temperature for 100sec
results in 13% performance gain for single core processor,
and 30% performance gain for two-core processor. Without
Tmax constraint, the performance improves almost 100%
for two-core processor.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids; J.6 [Computer
Applications]: Computer-Aided Engineering

General Terms
Algorithm, Management, Performance

Keywords
Dynamic thermal management, multi-core processor

1. INTRODUCTION
Loss of performance and reliability due to un-predictable

thermal hotspots has become a major issue. Dynamic ther-
mal management, where the chip operation is controlled
during runtime for curtailing thermal emergencies has be-
come an active topic of research. Thermal management can
be achieved by controlling processor knobs such as core fre-
quency and supply voltage, scheduling of tasks etc, which
in effect, control the power dissipation in different parts of
the chip. Many works have made significant contributions
on DTM [1][2][3][4][7][8].

The thermal constraint used to test the thermal feasibil-
ity of any control policy is usually a ballpark figure. Most
existing thermal management schemes assume this to be
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an absolute hard constraint which cannot be violated un-
der any circumstance. The impact of temperature on relia-
bility and lifetime is an average phenomenon. If we persis-
tently keep core temperature above the constraint, then the
performance and reliability will certainly suffer. But spo-
radic violation of thermal constraint will have little or no
impact. Moreover, in some mission critical systems, allo-
cating as much processing power to a task might be more
desirable than maintaining acceptable chip thermal state
while missing task deadlines. In this paper, we investigate
DTM policies that allow the thermal constraint to be vio-
lated for a user specified time period under the constraint
that the processor be brought back into acceptable thermal
state at the end of this period. Our techniques can also en-
force an absolute maximum thermal constraint which can
never be violated. Using our methods, the user can choose
to violate the thermal constraint whenever he/she chooses
to do so. Our objective here is not to refute the detrimental
impact of temperature on reliability, but to provide the op-
tion of violating the thermal constraint, should the designer
choose to do so. The choice of the degree and duration of
this thermal violation is up to the designer and depends
strongly on the criticality of the task deadline, the nature
of the task and the cost to replace the system should there
be a failure.

We investigate four problem instances:
1. Single Core: Given a time period tf , we allow the

temperature to rise above the regular thermal con-
straint in this period. We also give an absolute ther-
mal constraint Tmax which can never be violated. We
develop analytical expressions for the optimal fre-
quency policy such that maximal performance can
be extracted. Also, the final temperature at the end
of tf is within acceptable thermal constraint. Our
optimal policy uses only two distinct frequency and
one shutdown state, thereby ensuring practical im-
plementability.

2. Multi-core with same frequency: We extend the sin-
gle core problem into multi-core case, in which all the
cores run at the same frequency. We first do not con-
sider the absolute thermal constraint Tmax, and de-
velop analytical expression for the optimal frequency
policy which achieves the best performance while en-
suring the final temperature requirement. In this for-
mulation, the optimal frequency policy has only one
frequency and one shutdown state.

3. Multi-core same frequency with Tmax: We place ab-
solute maximum temperature constraint Tmax on the
multi-core same frequency problem, and develop the
frequency policy for this problem. In this policy, the
frequency should change continuously, so we develop
frequency legalization mechanism to approximate the
continuous frequency policy into a set of discrete val-
ues. This ensures the practicality of our approach.

4. Multi-core multi-frequency with Tmax: We general-
ize previous formulation to include independent fre-
quency control and separate Tmax for each core. We
also incorporate leakage into the power model.
We wish to assign a frequency policy for each core
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such that optimal total performance is obtained and
the core temperatures, while not violating their re-
spective Tmax constraints, are brought back into ac-
ceptable thermal levels at time tf . Since a closed form
analytical solution does not exist for this formulation,
we approximate the optimization problem using lin-
ear programming. Hence, near optimal solution can
be obtained efficiently. We also explore frequency le-
galization methods to ensure practicality.

The key novelty of our work is that we investigate opti-
mal processor core frequency policies when temperature is
a soft constraint. The analytical expressions and the LP
based formulations ensure the practicality of our schemes.
[7], [8] derive similar analytical expressions for single and
multicore systems but their objective is to maximize per-
formance under an absolute thermal constraint. Besides,
the general concept of soft thermal constraints can be ap-
plied to sensor based DTM as well. The experimental re-
sults show that 10℃ increase in the core temperature for
100 seconds results in 13% performance gain for single core
processor. A similar thermal increase in a two-core proces-
sor results in 30% performance gain and 100% performance
increase without Tmax constraint.

The organization of this paper is as follow. In section 2,
we explore the problem of placing soft thermal constraint
on single core processor. In section 3, we extend this prob-
lem to multi-core processor assuming all cores have the
same frequency. We generalize this formulation to include
separate frequency control for each core in section 4. In
section 5, we discuss the influence of leakage power. Sec-
tion 6 illustrates frequency legalization strategy and the
experimental result is given in section 7.

2. SINGLE CORE DTM

2.1 Single core thermal model
The thermal behavior of a single core chip can be mod-

eled by an RC circuit (figure 1). In this thermal RC model,
voltage represents the temperature, and current represents
the power dissipation in the processor. The resistance rep-
resents a potential heat transfer path through the packag-
ing, while the capacitors indicate the ability of the proces-
sor to store heat [2].

Figure 1: RC thermal model

Based on the RC thermal model in figure 1, we obtain
the following relationship between core temperature T and
power consumption P :

dT

dt
= − T

RC
+

P

C
(1)

where R (K/W) is the thermal resistance, and C (J/K) is
the thermal capacitance. The dynamic power consumption
is P = kf , where f is the frequency and k is a constant.
Here we ignore leakage power first and assume that the
power dissipation P is linearly dependent on the frequency.
Later on, we’ll discuss the influence of leakage in section 5

Assuming Tm is the initial temperature, we obtain the
core temperature T :

T = (Tm − Rkf)e−t/RC + Rkf (2)

For this RC model, the temperature can be maintained
at Tm, if it is running at the natural frequency fnat =
Tm/Rk. If the processor is running at a frequency f < fnat,
the temperature will decrease. Otherwise, the temperature
increases.

2.2 Soft thermal constraint for single-core pro-
cessor (SCTmax)

Here we call this problem “SCTmax” problem. Suppose
Tm is the manufacturer specified thermal constraint. In
the rest of the discussion, we assume that we start from
the initial condition T (0) = Tm. Our formulation can be
easily generalized to other steady state initial conditions as
well. As we have discussed, instead of placing strict con-
straint on the maximum temperature Tm, we investigate
the possibility of increasing the temperature and allow the
temperature to violate this constraint for a while, as long
as this period is within some bound. That is, starting from
the steady state Tm, for some period tf , say several min-
utes, we allow the temperature to increase above Tm, as
long as at the end of tf , the temperature goes back to the
steady state Tm. Meanwhile, although we have the flex-
ibility to violate the constraint Tm, it is undesirable for
the temperature to increase significantly above Tm. So we
impose an absolute constraint on maximum temperature
Tmax within [0, tf ]. This value can be selected based upon
how much the user allows the temperature to increase be-
yond Tm. Besides, the core frequency should be always
smaller than the maximum frequency fmax. Under these
constraints, we would like to maximize the total frequency
within this period. So we arrive at the following optimiza-
tion problem:

max

∫ tf

0

f(t)dt

s.t. T (0) = T (tf ) = Tm, T (t) ≤ Tmax

dT

dt
= − T

RC
+

kf(t)

C
0 ≤ f(t) ≤ fmax

(3)

Optimal Solution: The optimal frequency policy here is
(figure 2(a)): first, let the processor run at fmax, until the
temperature reaches Tmax(see figure 2(b)); then the proces-
sor runs at Tmax/Rk, so that the temperature maintains
at Tmax; finally, shut down the processor so that tempera-
ture goes back to Tm. The first switching point ts1 is the
moment when temperature reaches Tmax, while the second
switching point ts2 is the moment when we should shut
down the processor so that its temperature could reduce to
Tm at time tf :

ts1 = RC ln
Rkfmax − Tm

Rkfmax − Tmax
ts2 = tf − RC ln

Tmax

Tm

(4)

Figure 2: (a) Optimal frequency strategy for
SCTmax, (b) Corresponding temperature

It is noteworthy that this optimal strategy requires only
two distinct frequency fmax and Tmax/Rk, plus one shut-
down state, which can be easily realized in practice. Also,
the analytical nature of our solution makes the determina-
tion of the switching point very easy.

3. MULTICORE SAME FREQUENCY
3.1 Multi-core processor thermal model

We use the thermal RC circuit model in [7] as our multi-
core processor thermal model. Figure 3(a) shows the RC
model of a four-core processor, each core can be represented
by an RC pair, while Rp and Cp pair is analogous to the
package, whose value is much larger than R and C. Rl is
the lateral resistance, which represent the inter-core lateral
heat flow. We first explore the problem in which all proces-
sors run at the same frequency under the same maximum
temperature constraint Tmax.
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Figure 3: (a) RC model of a 4-core multi-core pro-
cessor, (b) Simplified model

Compared with the vertical resistances R that connect
the core to package, lateral resistance Rl between each core
is much larger [7]. So the lateral heat flow is much smaller
than the vertical heat flow. Here we first use a sim-
plified model that ignores lateral heat flow (figure
3(b)), and then add lateral resistance in the gen-
eralized model in section 4. Based on this simplified
multi-core RC thermal model, the relationship between the
core temperature Ti, frequency fi of each core, and pack-
age temperature Tp is in equation 5. (Here we still assume
linear dependency between the power dissipation P and
frequency f , and we assume there are n cores.)

dTi

dt
= − (Ti − Tp)

RC
+

kfi

C
, ∀core(i)

dTp

dt
= − Tp

RpCp
+

∑n
i=1(Ti − Tp)

RCp

(5)

Starting from the steady state, which occurs when both
Ti and Tp do not change, all the cores have the same initial
temperature that Ti(0) = Tm and the initial package tem-

perature is Tp(0) =
nRp

R+nRp
Tm, which represents the steady

state.

3.2 Soft thermal constraint for multi-core with
same frequency (MCSF)

In this version of problem, we assume all processors run
at the same frequency. For the sake of simplicity, we also
assume thermal steady state at t=0 with Ti(0) = Tm and

Tp(0) =
nRp

R+nRp
Tm (the core temperature is exactly the

thermal constraint). Our methods can easily be general-
ized to any valid initial steady state as well. Besides, since
all processors have the same frequency and initial temper-
ature, they will have the same temperature profile Ti(t)
based on the simplified model in 3(b). So the optimization
problem for this multi-core case is:

max n

∫ tf

0

f(t)dt

s.t. Ti(0) = Ti(tf ) = Tm, Tp(0) =
nRp

R + nRp
Tm,∀i

dTi

dt
= − (Ti − Tp)

RC
+

kf(t)

C
dTp

dt
= − Tp

RpCp
+

n(Ti − Tp)

RCp

0 ≤ f(t) ≤ fmax

(6)
Starting from the steady state in which Ti(0) is Tm, and

ends up at Ti(tf ) = Tm, the purpose is to maximize the to-
tal frequency within [0, tf ]. The first constraint is the con-
straint on initial and final processor temperature and initial
package temperature. The next two constraints specifies
how the processor and package temperature change with
respect to the frequency. Note, there is no constraint on
the maximum temperature in this problem formulation. In
the next subsection, we will incorporate a maximum core
temperature constraint Tmax as well.
The Optimal Solution: The optimal frequency strategy

is first all processors run at the maximum frequency fmax

and then, at the switching point ts, shut down simultane-
ously (as shown in figure 4).

Figure 4: (a) Optimal frequency strategy for
MCSF, (b) Corresponding temperature

The switching point ts is the unique real number satis-
fying:

TmC

fmaxk
(α1(1 − eα2tf ) − α2(1 − eα1tf ) +

eα1tf − eα2tf

(R + nRp)C
)

+γ1(e
α2tf − eα2(tf−ts)) − γ2(e

α1tf − eα1(tf−ts)) = 0

where α1 = −β1 + β2, α2 = −β1 − β2

γ1 = (R + nRp)Cα1 + 1, γ2 = (R + nRp)Cα2 + 1

β1 =
1

2
(

1

RC
+

1

RpCp
+

n

RCp
), β2 =

1

2

√
4β2

1 − 4

RpCpRC

(7)
This optimal solution has only one distinct frequency

(fmax) and one shutdown state, which can be very easily
realized in practice.

3.3 Imposing constraints on maximum tem-
perature (MCSFTmax)

Similar with the single core case, even though we allow
the temperature to violate the constraint, we don’t want
the core temperature to be too high. So we impose max-
imum temperature constraint Tmax here and the problem
formulation becomes:

max n

∫ tf

0

f(t)dt

s.t. Ti(0) = Ti(tf ) = Tm, Tp(0) =
nRp

R + nRp
Tm

dTi

dt
= − (Ti − Tp)

RC
+

kf(t)

C
dTp

dt
= − Tp

RpCp
+

n(Ti − Tp)

RCp

Ti(t) ≤ Tmax, 0 ≤ fi(t) ≤ fmax

(8)

Solution: The frequency strategy for this problem is (as
shown in figure 5): first, let all processors run at fmax, un-
til their temperature Ti reaches Tmax; then the frequency
changes so that the temperature maintains at Tmax; finally,
shut down all the processors so that temperature go back
to Tm as fast as possible. Basically this solution follows
the same intuition as the single core problem formulation
SCTmax. The first switching point ts1 is the moment when
core temperature Ti reaches Tmax. The second switching
point ts2 is the moment that we should shut down the pro-
cessors so that Ti could reduce to Tm at time tf .

Between [ts1, ts2], the processors should run at the fre-
quency which could let Ti maintain at Tmax. Since we
don’t want the core temperature to change, dTi

dt
= 0 and

Ti = Tmax. Hence the frequencies should be such that

dTi

dt
= − (Ti − Tp)

RC
+

kf(t)

C
= 0, ts1 ≤ t ≤ ts2

⇒f(t) =
Ti − Tp(t)

Rk
=

Tmax − Tp(t)

Rk

(9)

Also, Tp follows the following dynamics:

dTp

dt
= − Tp

RpCp
+

n(Tmax − Tp)

RCp
(10)
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Figure 5: (a) Optimal frequency strategy for
MCSFTmax, (b) Corresponding temperature

So the frequency f(t) for ts1 ≤ t ≤ ts2 is:

f(t) = − 1

Rk
(T s1

p − nRp

R + nRp
Tmax)e−σ(t−ts1) +

Tmax

(R + nRp)k
(11)

Between ts1 and ts2, the frequency changes continuously,
which is undesirable since continuous frequency change is
hard to implement. In Section 6, we will present techniques
of legalizing the continuous frequency into pre-defined num-
ber of discrete values.

4. MULTICORE DISTINCT FREQUENCY
So far, we have assumed that for the multi-core proces-

sor, all the cores have the same frequency and is constrained
by same maximum temperature Tmax. Also, we used a sim-
plified model that ignores lateral resistance. In this section,
we investigate the problem where each core has a separate
frequency control and has different maximum temperature
constraint. We also use the more accurate model as in fig-
ure 3(a) that incorporate lateral resistance. This adds com-
plexity to the problem and analytical solutions are hard to
formulate. Therefore, we propose a Linear Programming
(LP) based approximate problem formulation.

4.1 Approximate thermal model for multi-core
processor

In our model, tf is divided into l slots and each slot,
whose length is Δt, contains two parts.

First part: for 0 ≤ t < 10RC, the package temperature
Tp is assumed to be constant. This is because RpCp is
much larger than 10RC, so within this period, the change
in Tp is so small compared to the change in core tempera-
ture Ti that Tp could be regarded as constant. The lateral
heat flow is also ignored here, since it is much smaller than
vertical heat flow. So during this short period, the change
in power consumption of core i mostly influences Ti, but
has little impact on other cores. The paper [7] has a similar
approximated model. The model is described with figure
6(a) and equation 12 (for simplicity but without lose
of generality, we assume two cores here).

Second part : for 10RC ≤ t < Δt, the capacitors C get
charged. Although Ti changes, it changes due to the change
of Tp. So the capacitors C can be removed from the model.
Also, during this period, power consumption of core i will
influence the temperature of other cores through lateral
heat flow, so we incorporate lateral resistance here. The
resulting model is shown in figure 6(b), and equation 13
describes its thermal dynamics. Note that the paper [7]
has similar model.

dTi

dt
= − (Ti − Tp)

RC
+

kfi

C
, ∀i (12)

dTp

dt
= − Tp

RpCp
+

k(f1 + f2)

Cp

T1(t) = Tp(t) + R(kf1 + Il)

T2(t) = Tp(t) + R(kf2 − Il)

T2 − T1 = Rl × Il

(13)

The overall model: As mentioned earlier, the duration
tf is divided into slots of length Δt. Let f j

1 (f j
2 ) denotes

the frequency of the first(second) core in j’th slot and in

Figure 6: (a) LP based thermal model for t < 10RC,
(b) LP based thermal model for t ≥ 10RC

each slot, the frequency is assumed constant. Therefore
the core temperature T j

1 and T j
2 , and package temperature

T j
p of each slot is monotonically increasing or decreasing.

Let the core temperature T j−1
1 and T j−1

2 , and the package
temperature T j−1

p be the thermal state at the end of slot j-
1, these values form the initial condition to the differential
equations describing the thermal dynamics in slot j (with

f j
1 and f j

2 be the core frequencies). By solving equation 12
we can get the core and package temperature at 10RC in
slot j:

T 10RC
i = (T j−1

i − T j−1
p − Rkf j

i )e−10 + T j−1
p + Rkf j

i , ∀i

T 10RC
p = 0.5 × (T 10RC

1 + T 10RC
2 − Rk(f j

1 + f j
2 ))

(14)
Note that for the purpose of simplifying the model, we

had assumed Tp to be a constant before 10RC. In reality
Tp does change a bit and we estimate the value of Tp at

10RC by taking the average of (T 10RC
1 −R(kfj

1 + Ij
l )) and

(T 10RC
2 − R(kf j

2 − Ij
l )).

Now using the temperature at 10RC as the initial tem-
perature, we get the temperature at the end of slot j by
solving equation 13:

T j
p = (T 10RC

p − Rpk(f j
1 + f j

2 ))e
−Δt−10RC

RpCp + Rpk(f j
1 + f j

2 )

T j
1 = T j

p + Rk(
R + Rl

2R + Rl
f j
1 +

R

2R + Rl
f j
2 )

T j
2 = T j

p + Rk(
R

2R + R
f j
1 +

R + Rl

2R + Rl
f j
2 )

(15)
From equation 14 15, we can see that the core

and package temperature at the end of any slot is
a linear function of the frequency. We simulated this
approximate model in SPICE and found our results to be
very accurate.

4.2 LP based multi-core multi-frequency op-
timization problem

In the problem formulation for multi-core multi-frequency,
we generalize the previous problem so that each core can
have separate control of frequency (different f) and can
heat up to difference maximum temperature (different Tmax).
We also use the more accurate model incorporating lateral
resistance in this problems. Here we use two cores to de-
velop this problem, but without lose of generality, we can
extend it to n cores.

Starting from the steady state, the initial temperature
T 0

1 and T 0
2 is Tm, and the initial package temperature T 0

p

is
2Rp

R+2Rp
Tm. As indicated in equations 14 and 15, with the

initial temperature, we can get the temperature in the first
slot. Then, using the temperature at the end of the first
slot T 1

1 , T 1
2 and T 1

p as the initial temperature for the second
slot, we can get the temperature at the second slot, and
so forth. So with the initial temperature, we can get the
temperature at each slot. Since the frequency in each slot
is constant and the temperature in each slot is monotonic,
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we just need to place constraint on the temperature at the
end of each slot. So the problem formulation here is:

max
∑

∀slots:j

(f j
1 + f j

2 )

s.t. T 0
1 = T 0

2 = Tm, T 0
p =

2Rp

R + 2Rp
Tm

T j
1 ≤ Tmax1, T j

2 ≤ Tmax2, j = 1...l − 1

T l
1 ≤ Tm, T l

2 ≤ Tm

0 ≤ f j
1 ≤ fmax1, 0 ≤ f j

2 ≤ fmax2

(16)

where j is the index of slot, Tmax1 and Tmax2 are the max-
imum temperature constraints for the two cores. The first
constraint requires the initial temperature to start from
the steady state. The second constraint requires that the
temperature at the end of each slot (except the last slot)
should not exceed Tmax1 or Tmax2. The next constraint
requires the temperature reduce to Tm at the end of the
last slot.

As indicated in equation 14 and 15, each temperature is
a linear function of the frequency in each slot. Therefore,
this problem can be solved efficiently with any standard
linear programming methods. If we divide tf into smaller
slots, the LP formulation has more variables, but we can
potentially get better solution. Contrarily, if we use less
number of slot, the problem will be solved faster, but the
result might be worse. Hence by controlling the sampling
degree of tf , we can obtain better or faster results.

5. IMPACT OF LEAKAGE
The total power consumption consists of dynamic power

Pd = kf and leakage power Pl. The leakage power, which
depends on temperature, is Pl = A×T 2 × e−

a
T +B (A,B,a

are constants)[5][11]. The dynamic power Pd is a linear
function of frequency. As it has been highlighted in LP
model, tf is divided into slots. In each slot, frequency is
constant. The leakage power follows the change of temper-
ature T (t). Since the length of slot is very small, the change
in temperature in each slot is very small. So is the change
in leakage power consumption. Therefore, we approximate
the leakage in each slot that it just depends on the initial
temperature of the slot. So the power consumption of core
i in j’th slot P j

i is:

P j
i = P j

d + P j
l = kf j

i + A × (T j−1
i )2 × e

− a

T
j−1
i + B (17)

In equation 18, we re-derive the temperature T 10RC
i , T j

p , T j
i

by replacing the dynamic power kf j
i in equations 14, 15

with total power consumption P j
i in equations 17:

T 10RC
i = T j−1

i e−10 + T j−1
p (1 − e−10) + R(1 − e−10)P j

i

T j
p = (0.5e−10(T j−1

1 + T j−1
2 ) + (1 − e−10)T j−1

p )e
−Δt−10RC

RpCp

+ (Rp − (Rp + 0.5Re−10)e
−Δt−10RC

RpCp )(P j
1 + P j

2 )

T j
1 = T j

p + R(
R + Rl

2R + Rl
P j

1 +
R

2R + Rl
P j

2 )

T j
2 = T j

p + R(
R

2R + R
P j

1 +
R + Rl

2R + Rl
P j

2 )

(18)
From equation 17, we can prove that the total

power consumption of core i in slot j P j
i is a linear

function of the frequency and convex function of

temperature T j−1
i . Here T j−1

i is the temperature of
core i at the end of slot j-1, which is also the initial
temperature of core i at slot j. So the new T 10RC

i ,

T j
p and T j

i in equation 18, in which the coefficients

before P j
i are all positive, are also linear function of

frequency and convex function of the temperature

at the end of slot j-1 (T j−1
i ). The optimization

problem formulation is still described by equation
16, in which the objective function is linear and the
constraints are convex. As a result, this problem
can be solved with convex optimization methods.

6. FREQUENCY LEGALIZATION
In the optimal frequency strategy for multi-core single

frequency case, to let the temperature maintain at Tmax,
the frequency needs to change continuously, which is im-
practical in real implementation. The LP formulation also
generates solutions with arbitrary frequency profiles. In
general, most processors cannot efficiently implement a con-
tinuous range of frequencies and are constrained to operate
in a pre-decided set of discrete frequencies. So we wish to
legalize the continuous frequency f(t) into r discrete levels,
where r depends on how many distinct frequencies we wish
to have on a processor. The approximation is basically ap-
proximating the continuous frequency function by r lower
bound piecewise constant values. Basically, we will divide
the frequency function into r slots. In each slot, we run the
processor at the highest possible lower bounding frequency
within this slot. The problem is to determine the length
of each slot. Once the slot length is fixed, we can execute
the processor at the smallest frequency in the function f(t)
in this slot. This ensures that the thermal constraints are
never violated.

In multi-core single frequency model, during period [ts1, ts2],
the frequency profile (see equation11) is of the form e−σt.
Hence in slot (tj−1, tj), the highest lower bounding fre-
quency is f(tj). The objective of legalization is to find r
slots while minimizing the total error between the legalized
frequency and the original frequency:

min

r∑
j=1

(

∫ tj

tj−1

f(t)dt − (tj − tj−1)f(tj)) (19)

where t0 is ts1, tr is ts2 and the j’th slot is from tj−1

to tj . Also f(t) is the actual frequency profile and (tj −
tj−1) is the length of the j-th slot and f(tj) is the lower
bound approximation in that slot. It can be proved that
the position of the splits that minimizes the total error is
given by the following equation:

e−σ(tj+1−tj) = σ(tj−1 − tj) + 1, 1 ≤ j ≤ r (20)

For the frequency legalization of LP based model, we
could also use a similar approach.

7. EXPERIMENTAL RESULTS
We obtained the parameters for the equivalent RC circuit

R,C,Rp, Cp,Rl from [9] [10]. Assuming linear dependency
between dynamic power and frequency, P = kf , the coeffi-
cient k is obtained by k = CeffV 2

dd. Simulating the 0.18μm
technology, we set Ceff as 1.11×10−9, and Vdd = 1.6V [6].
The normal thermal constraint Tm is 70℃. We experiment
within the period tf = 100sec.

7.1 Single core
In single core model, the value of R and C is a combi-

nation of both the core and package as a whole. We set
thermal resistance R = 0.34K/W and the thermal capac-
itance C = 340J/K. If the initial temperature is Tm, and
we don’t wish to violate the thermal constraint then the
highest frequency we can execute for the entire duration
tf is fnat = Tm

Rk
[8]. As shown in figure 7(a), if the abso-

lute temperature constraint Tmax = 80℃, as we increase
the maximum frequency fmax from fnat to 20fnat, the ra-
tio between the average frequency of the optimal solution
(fmax × ts +0× (tf − ts))/tf ) and the natural frequency in-
crease from 1 to about 1.13. Interestingly, we can see that,
after fmax increase to about 5fnat, the frequency gain al-
most remains the same. That means, increasing fmax be-
yond a certain level is not beneficial since the system is
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then constrained by the maximum temperature Tmax. We
also tested the frequency gain for different Tmax. As we ex-
pected, when Tmax increases, the frequency gain will also
increase.

Figure 7: (a) Frequency gain for SCTmax with dif-
ferent Tmax, (b) Frequency gain for MCSF, (c) Fre-
quency gain for MCSFTmax with different Tmax

7.2 Multi-core with same frequency
In the multi-core model, we set thermal resistance for

each core R = 0.42 K/W and their thermal capacitance
C = 0.024 J/K. For the package, Rp = 1 K/W and Cp =
140.449 J/K. We assume there are n = 2 cores, and the
natural frequency is fnat = Tm

(R+nRp)k
. Conceptually, for

a multicore processor with the initial core temperature

Ti(0) = Tm and package temperature Tp(0) =
nRp

R+nRp
Tm,

the maximum core frequency such that the core tempera-
ture stays within Tm is the natural frequency fnat. As we
increase the maximum frequency fmax from fnat to 20fnat,
the ratio between the average frequency of the optimal so-
lution and the natural frequency (frequency gain) increase
from 1 to about 2, if there is no constraint on the maximum
temperature Tmax (figure 7(b)).

If we also place the maximum temperature constraint,
e.g., Tmax = 80 ℃ (MCSFTmax problem), the resultant
frequency gain ranges from 1 to 1.3 (as shown in figure
7(c)). Interestingly also, after fmax increases to about
5fnat, the frequency gain almost stays unchanged. This
is also because of the constraint on Tmax. So with the
maximum temperature constraint, increasing fmax to very
high does not help in improving the performance.

As shown in figure 7(c), in which fmax still changes from
fnat to 20fnat, and Tmax changes from 75 ℃ to 100 ℃,
when Tmax increases, the frequency gain also increases.

7.3 LP based multi-core multi-frequency
For the LP based multi-core multi-frequency model, we

use more accurate model where lateral resistance is added
and simulate two core case. We set lateral resistance Rl =
3.75 K/W. Each core has different Tmax, and can control
the frequency separately. Here, we set Tmax1 = 80 ℃ ,
Tmax2 = 90 ℃ and there are n = 2 cores. The initial
temperature Tm = 70℃.

First, we obtain the optimal frequency policy through
linear programming. The optimal frequency policy and the
corresponding temperature is shown in figure 8(a), 8(b). In
the optimal frequency policy, firstly, the two processors run
at their maximum frequency fmax1 and fmax2, respectively,
until each of them reaches its maximum temperature one
after another; and when each processor reaches its maxi-
mum temperature, the frequency of this processor changes
so that the temperature of this processor maintains at its
maximum temperature. Then, they shut down simultane-
ously and their temperature reduce to Tm at tf .

When fmax increases, its frequency gain is shown in fig-
ure 8(c) (solid line). Assume both core have the same fmax,
which increase from fnat to 20fnat, the frequency gain is
from 1 to about 1.46. And after about 2fnat, the frequency
gain almost stays unchanged.

7.4 Frequency legalization
Using the frequency legalization strategy in section 6 for

our LP based model, the resultant frequency gain is shown
in figure 8(c) (dotted line). Here we use 4 levels to ap-
proximate the continuously changed frequency. Compared

with the average frequency without legalization, there is
about 8% frequency loss. But even after frequency legal-
ization, there is still about 1.4 performance gain. More
importantly, the legalized frequency strategy is practical
and can be used in real implementation.

Figure 8: (a) Frequency policy for LP model, (b)
Corresponding temperature, (c) Frequency gain
and frequency legalization for LP model

8. CONCLUSION
In this paper, we explored dynamic thermal management

problem under soft constraints for both single and multi-
core processor. We obtained analytical expression of the
optimal frequency policy. We also developed linear pro-
gramming based approximation for multi-core processor.
Finally, we used frequency legalization method so that our
frequency policy can be used in realistic scenario.
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